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Workflows and Workflow Systems at Fermilab 

Jim Kowalkowski, Fermilab Scientific Computing Division 

1 Introduction 

1.1 Purpose 
This paper provides information on the state of the art in distributed area (DA) and in situ 
(IS) workflow management systems from the perspective of the Fermilab Scientific Compu-
ting Division (SCD) and the experiments and projects that it is directly affiliated with. The 
paper summarizes what can and cannot be done today with existing workflow systems and 
the challenges of the future. It is motivated by the Workflow Workshop panel discussion 
descriptions, which states 

[Provide] a high-level overview or it can be something more specific about some workflow 
aspect. Some of the questions that one could consider addressing are: 

• How can we characterize existing DA and IS workflow systems? 
• What are the strengths and weaknesses of the DA and IS workflows? 
• What are the common functions in DA and IS workflows? 
• What is lacking in current systems? 

In addition, we will highlight some future directions. 

1.2 Scope 
The science tasks of interest here can be divided into three major classes: high energy 
physics (HEP) experiments, Astrophysics experiments, and specialized simulations. HEP 
tasks can be broken down into three major classes: detector simulation, production data 
processing (aka reconstruction), and analysis.   

All HEP tasks have traditionally been run on distributed resources and have just recently 
been moving towards utilizing HPC resources. The work within SCD is dominated by CMS 
and the upcoming Intensity Frontier experiments that include NOvA, muon g-2, mu2e, and 
later DUNE.  All science tasks from this area will be represented or summarized in this pa-
per. 

Astrophysics experiments have been using a mix of distributed and HPC resources, alt-
hough they are currently dominated by distributed resources.  Only analysis work will be 
represented here from this area. The focus will be DES analysis and some forward-looking 
analysis work for the LSST Dark Energy Science Collaboration. 

The specialized simulations utilize HPC resources. Examples only include Accelerator 
Modeling with Synergia and LQCD production workflows using MILC. 

1.3 Terminology 
Event Data Model: Representation of the data that an experiment collects, all derived in-
formation, and historical records necessary for reproduction of results. 

Event: A collection of data products associated with one time window, the smallest unit of 
detector data collection to be processed. It can be thought of as all the physical interactions 
that occurred within a time window throughout an apparatus. 
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Module: An object that “plugs into” a processing stream and performs a specific task on 
units of data obtained using the Event Data Model, independent of other running modules. 

Data product: Experiment defined objects that represent detector signals, reconstruction 
and simulation results, physics objects, etc.  

Software framework (SWF): Coordinates event processing via configurable, pluggable 
modules (e.g., reconstruction, filtering, and analysis) that add data to and retrieve data from 
events, supporting a programming model that separates algorithm and data. Paths that 
events move through are specified using a simple workflow language. Responsibilities in-
clude managing metadata and abstracting I/O actions from the scientist developer-user. 

Dataset: Events are collected into files with hierarchical structure and metadata. Files are 
collected and managed by data handling systems and contained with datasets. Datasets 
are collections of files that serve a particular purpose: all the raw data an experimented col-
lected up to now, all the simulation produced with a particular physics signal, all the 
reduced data necessary for producing conference results. 

Campaign: All the computing that is necessary to process a dataset or to construct a new 
dataset or to derive a new dataset from an existing one. Carrying out a campaign is a major 
goal of a workflow system. 

ROOT: The current set of tools used, in this context, for specifying the data model, manag-
ing the I/O to files, and providing commonly used physics objects, such as histograms and 
tabular data containers. It also provides a library of commonly used HEP algorithms for aid-
ing in the analysis and display of data. 

Geant4: The HEP standard simulation engine for propagating particles through matter. In 
this context, it is embedded and managed within the software framework. 

2 Overview 

2.1 HEP state of the art 
A general view of the science problem being solved within an HEP experiment is depicted 
in Figure 1. Nearly all HEP workflows related to production and data processing follow this 
form. Production processing will have one or more phases that include simulation and data 
reduction. Workflows will typically be realized in two major layers: a campaign specification 
that outlines the overall goal that is to be achieved, and a configuration for a fine-grained 
workflow engine within the software framework that operates on partitions or blocks of data 
from the ensemble of data to be processed. The software framework coordinates most of 
the actual algorithmic work that is carried out. Almost all of the simulation and data reduc-
tion sub-workflows are carried out within software framework applications. The format and 
interpretation of data files up through “reduced data” follow a standardized ROOT format. 
The framework defines an interface for each algorithmic module to fetch and put data into 
an event. 

An abstract view of a campaign workflow is depicted in Figure 2. A typical workflow specifi-
cation will describe these steps, connections, and data sources. The overall goal is to start 
from nothing but a description of the physics that we want to model and produce a number 
of datasets, some of which are optional: (a) particle data or the output from the generator, 
(b) instrument response dataset or output from the simulator, (c) derived dataset or the 
output from running data reduction algorithms, and (d) additional derived datasets that con-
tain only key features for various physics analysis. 
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As with many production processing systems, there are several important features that 
make specifying a workflow at this level difficult. Each of the phases could require hundreds 
of thousands of executions of the software framework to carry out the configured task.  In 
the simplest form that is still common, each phase has a boundary that requires all files 
contributing to a dataset to be synchronized with the global permanent storage and data 
handling system. Input data files must be properly staged before the computation is sched-
uled to avoid wasting compute cycles waiting for data. The auxiliary data access requires 
connections to high performance databases, hierarchical caching system, or staging tech-
nology depending on the size and complexity of the this kind of data. 

Resource needs and mappings for the campaign are not specified at this level. Another key 
feature is that the actual physics workflow configuration is buried at a lower level. That 
workflow specification is also used during testing to validate results.  It also ensures data 
object type consistency when chaining algorithms. The metadata protocols provide infor-
mation flow from the internal framework out to the data handling systems. 

Figure 1 – Types of HEP Processing Tasks 
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A typical expanded view of any of the processing boxes can be seen in Figure 3. Here we 
see workflow jobs scheduled where the data lives or where standard data movement tools 
have been used to migrate data into place for processing. The generic software framework 
is acting in two roles: running the algorithms (CPU bound) and merging results (I/O bound). 
The SWF step traditionally consumes one batch “slot” or core during it lifetime, which is 

aligned with the time a resource can be reasonably held (about 8 hours). Output data is 
transferred to a safe location in units of files.  Note that a merge step cannot start until 
enough data files appear from many other SWF jobs.  This makes specification with job 
DAG tools difficult. 

2.1.1 Simplified view of the CMS layers 
Now we are ready to show a typical workflow specification and the layers of tools and soft-
ware that are involved in breaking down the campaign into chunks of work that can be 
completed within a job. CMS is used as an example here in Figure 4 and will be compared 
with other solutions in a later section. Given a description of the physics necessary to con-
figure the software framework, a dataset to be processed, and software release 

 
Figure 2 – Abstract production workflow 
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information, one can produce a description, or workflow specification of the desired phases 
and output datasets that need to be coordinated.  

Much of Fermilab pro-
cessing is managed at a 
low level using pilot-based 
glideinWMS to efficiently 
handle the allocation and 
supplying of work to batch 
system resources man-
aged by Condor. Multiple 
queueing layers break 
down work into packages 
which operate on dataset 
blocks and break packag-
es into jobs which operate 
on a few files. Work man-
agers generate jobs that 
allow maximum utilization 
of the resource allocations 
and fair use across com-
peting campaigns and 
individual analysis tasks. 

2.1.2 Differences be-
tween experiments 
Going from CMS to muon 
(mu2e, muon g-2) to neu-
trino experiments (NOvA, 
MicroBooNE, DUNE), you 

will see good agreement in the overall workflow structure and in the underlying tools that 
aid in the execution. For underlying infrastructure, this includes job submission, data trans-
fer, data cataloging, data storage, batch systems, and pilot-based workload management.  
The main differences come about in the orchestration layers of the workflow system. As 
with the CMS example, each system is tied to the experiment software, its practices and 
size, and specific physics needs within the software framework. Nearly all use general-
purpose scripting languages to directly coordinate activities and communicate with outside 
systems. 

Smaller experiments are moving towards handling the orchestration through global state 
machines where transitions are triggered by the posting of files into the managed datasets. 

2.1.3 Common variations and hidden conditions 
Both within and among the experiments there are common variations to the generic work-
flow given above. Relevant ones for this discussion are: multi-stage generation or 
simulation, mixing, error handling, and validation handling. 

Event mixing happens when noise or other addition signals such as pile-up need to be 
added to events to make them look more like real data that would be seen in a detector. 
The typical mixing procedure is to merge many noise events from alternative datasets into 
the events that are processed in the main data stream. 

 
Figure 3 - Expanding a phase 
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Any of the major phases may be further broken down into multiple steps. Examples that 
can cause this are use of tools that generate data files outside the standard formats, or 
complexity in the mixing process. 

 
Figure 4 - Simplified CMS workflow system 
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Some workflows will include paths that run through all phases with a subset of the data that 
is being generated to verify that the results are correct. Downstream steps are started as 
soon as enough data appears for it to start. 

 
Figure 5 - A cosmology analysis workflow 
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2.2 LSST DESC  
Many years ago, SCD software experts partnered with scientists and developers in the 
cosmic frontier (astrophysics area).  One of the major goals was to bring the collider / de-
tector collaborative software best practices and tools into the cosmic area to help address 
software development needs within their rapidly growing collaborations.  Early efforts start 
with the now-deceased JDEM project with the Science Operation Center. More recently the 
team worked with ANL on the PDACS projects, and then on the CosmoSIS project with 
DES. The latest project was with the LSST Dark Energy Science Collaboration demonstrat-
ing analysis workflows that include CosmoSIS and carrying forward what was learned in 
PDACS and the JDEM SOC.  This demonstration, shown in Figure 5, is interesting here 
because it has elements of the standard HEP workflow deployed using multiple computa-
tion sites, using common FNAL-supported batch processing infrastructure, community-
developed science applications, and a general portal system with workflow capabilities 
(Galaxy carried forward from PDACS experience).  In additional, it includes running a ge-
neric software framework for parameter estimation (CosmoSIS).  The analysis of this 
project is outside the scope of this paper.  It did, however, provide a good test case for ex-
ercising a generic workflow management system with a real science analysis use case 
involving a diverse set of applications. The demonstration showed promising results for 
canned or commonly used workflows, where well-defined parameters are exposed through 
the application wrapper layer and controlled through a web interface. The most interesting 
result came out of postmortem discussions. The scientists involved wanted to see much 
closer integration with the development and run-time environments, where repositories are 
manipulated, code is changed, and local testing is accomplished. This includes workflow 
specifications written in text files and quick integration with other applications contributed by 
collaborators. This very much matches the requirements and work modes of the HEP de-
tector/collider community. 

3 Commentary 
Here I only give a few examples of changes, concerns, and challenges heading into the 
future for workflow systems that directly affect the Fermilab program. 

3.1.1 Near future changes 
File transfers to global storage are being avoided by scheduling workflow stages back-to-
back on the same resource. Files are written to and read from local storage during these 
stages and only moved to permanent storage at well-chosen end points. There are obvious 
benefits for this organization, but there are also tradeoffs in the amount of data that can be 
processed due to application run-time limits and longer chains mean longer run-times.  

With multicore capabilities entering the software frameworks, as with CMS in the run that 
has just started, entire nodes will be allocated for this multi-stage processing to help opti-
mize and balance performance. 

WAN Networking infrastructure improvements have permitted streaming capabilities to be 
integrated directly into the front-end of the software framework applications using technolo-
gy such as XROOTD.   

3.1.2 Future challenges 
Over the next ten years, the bigger challenge will be to process data coming from increas-
ing complex detector systems. CMS will be realizing a pile-up increases of 5-7 (pile-up of 
140-200).  Increases in date rate and complexity can require increases in CPU resources 
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as much as 50x without substantial change considering the O(n2) tracking algorithms. At 
the Intensity Frontier, extremely large LAr detectors will experience similar tracking algo-
rithm difficulties. 

Analysis follows standard production runs. Working groups and individuals perform these 
activities. Current practice is for these activities to be coordinated through batch systems, 
using resources that overlap with production processing. An obvious goal is to move these 
processing times down towards interactive system speed. 

3.2 Unique orchestration solutions 
Every experiment automates standard or common workflows for the production processing 
described above and for some of the later analysis workflows that follow. This automation 
comes about through experiment-provided scripting and experiment-developed tools. Shar-
ing or commonality seems to come mainly at the level of “the job”, and the tools necessary 
to make the software and data available at the computation site. This is true across almost 
all the classes of processing seen at Fermilab. Why has common tool practices and sharing 
using external tools not extended to any reasonable degree into the orchestration layers? 
Here is a list of some of the major things that collectively give insight into the answer of this 
question.  

• Workflow specification language capabilities – The scientists here want text files that 
can be modified with the editor of their choice. XML is too verbose. Graphical editors 
are not liked. A custom language needs to express the things they want clearly: data-
flow as well as control flow expressions, good user-defined type support, simple and 
algorithm configuration constructs. Type handling and configuration have in the past not 
been able to satisfy the needs of an experiment better than what specialized scripting 
can do. The abstraction level is an important feature and how it maps onto underlying 
systems.  This is one of the more difficult areas to gather good requirements. 

• Application integration – the languages, protocols, and constructs necessary for binding 
the science applications to the workflow system have not been well-received or readily 
done by developers that are not experts in the workflow system tools. 

• Mapping and integrating additions features input workflow systems, such as monitoring 
integration, automated provenance collection and propagation, and auxiliary data ser-
vice interactions. 

• Scaling down for use in a development environment on a laptop and cleanly scaling up 
to local clusters and GRID resources without substantial infrastructure resources and 
administration. Control over translating workflow specifications to resources. 

• The existence of flexible software frameworks that provide the applications. 

3.3 Strengths and weaknesses 
One of the key strengths that have made large-scale science possible is the collaborative 
development systems and the establishment of protocols within the software framework 
applications for algorithms interacting with data and the rest of the world. In some respects, 
it is due to this common programming model and architecture. This model has permitted 
hundreds of collaborators to contribute algorithms (as pluggable modules) into common 
libraries and repositories. These algorithms are dynamically combined into comprehensible 
processing sequences at run-time using simple scripting language commands.  The dy-
namic configuration of sequences can contain thousands of modules that carry out complex 
science tasks within one program execution.  It is worth noting that nearly all the algorithms 
are heavily parameterized (using a standard configuration language) to accommodate con-
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ditions that will be experienced during operations.  All of these features do mean that there 
are relationships and integration of development, packaging and runtime environments. 

It is my observation that there is a fairly large barrier between the internal software frame-
work orchestration and the higher-level campaign orchestration layer. There is almost no 
visibility into the scheduling choices between these layers. This “decoupling” limits opportu-
nities for reordering, splitting, or joining workflow steps to better utilize the available 
computing resources. Up until now, this has been a reasonable limitation with the assump-
tion of higher uniform processing nodes.  Software frameworks also produce important 
performance statistics, status message, and provenance records that need to be communi-
cated and interpreted at all levels of processing. This information helps to identify errors 
and bottlenecks and can help to steer future workflow steps (based on announcements of 
data file completions). The decoupling locks formats down at the “log file” level, where this 
out-of-and data must be moved off the processing node and parsed. A more integrated ap-
proach could provide commonality in the protocols and data formats at the transaction 
level, therefore allowing more flexibility for use. An advantage to this organization is that 
“scaling down” to the laptop or development system level for creating modules, testing, de-
bugging, and personal analysis is very natural. 

Because orchestration layers are either hand-written or produced specifically for an exper-
iment, the operations that can be performed, the applications that can be used, and the 
underlying systems that can be used have a rigid specification. In other words, specific ap-
plications must be changes to reflect different high-level workflows. This is generally a bad 
quality, but it does mean that the system does what the experiment wants. In my opinion, 
another disadvantage of this organization is that the system are difficult to evolve if there 
are changes in computing technology because the major development is complete when 
the experiment begins to take data. Upgrades to existing experiments do allow for some 
adaptation. 

Metering of work due to current computing models means long term-around time. 

Complexity in the I/O and persistency layers within the framework and the costs of file-
oriented processing has the advantage of allowing for user-level arbitrarily complex data 
models that do not impact the framework software. This is great for tailoring data structures 
to match algorithms. It also permits reuse of the technology to store provenance and other 
metadata within the file alongside the main data stream. The automation here does come 
with a cost. Arbitrary data structures can be difficult to pass from machine to machine with-
out serialization and utilizing the file protocol. Performance is also difficult to predict. 

There are other features of the module protocol and event data interactions that make scal-
ing and scheduling of calculations difficult that are outside the scope of this paper. 

3.4 R&D Challenges 
As stated earlier, WAN networking improvements have definitely helped make large-scale 
workflow processing possible. The improvements on the standard heavy-weight core clus-
ter node have not been that significant with regards to memory, local I/O, and CPU / 
multicore performance. Movement towards HPC resources has already started and many 
of the processing tasks outlined here could greatly benefit from efficient access to exascale 
resources. 

One key challenge will be to evolve the programming model to accommodate more diverse 
processing environments, with special focus on the availability of high performance inter-
connects and many-core compute resources and heterogeneous architectures.  This needs 
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to be done while preserving the features essential for large-scale collaborative science, 
which include dynamic configuration that integrates well with the development environment. 
Currently practice utilizes Object Oriented programming principals to bind parameters to 
algorithms and internal services to provide random access to auxiliary data. Including a 
level of parameterization that accounts for parallel resources to be utilized changes this 
model substantially.  

Moving to exascale era machines will almost certainly mean changing from a file-oriented 
I/O subsystem to an streaming-based system, avoiding expensive object serialization, 
compression, and permanent storage operations – especially to global off-site storage until 
they are needed. At some point it may become less expensive to regenerate intermediate 
data from provenance and metadata stored with derived results, than to request data trans-
fers from permanent storage systems. Moving to efficient streaming-based I/O may also 
force data structures to be simplified.  

Figure 6 shows a future framework where file I/O is minimized by directly moving or operat-
ing on events or blocks of events. The framework is still in charge of putting together a fully 
configured set of modules and scheduling the movement of data through them. It will con-
tinue to automatically generate and transmit provenance and metadata so that any relevant 
piece can be reproduced. These modifications to workflow will require rethinking the 
boundaries between traditional workflow system components i.e. the workload manage-
ment and software framework, where these components become more tightly integrated to 
permit far better optimizations. 

4 Conclusion 
The “state of the art” workflow 
management systems of HEP 
are moving further away from 
the standard batch cluster node 
operations due to advances in 
multi-core, many-core, and 
networking advancements.  
Streaming I/O layers and new 
programming models that allow 
for increased flexibility in the 
units of work being processed 
make these kinds of applica-
tions more ready to effectively 
use exascale era computing 
resources. 

Traditional HPC applications 
also seem to adding features 
such as in situ analysis pro-
cessing to permit effective 
operation in the new era. If I 
look back at the analysis box of 
Figure 1, there might be signifi-
cant overlap in the kinds of 
functions that scientists will 
want to do in situ and those 
from the HEP DA world. If this 

 
Figure 6 - Future era 
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is true, it could mean that the HPC applications will start facing similar difficulties with irreg-
ular data structures and workloads that analysis activities typically involve. 

Many of the features necessary for in situ processing are readily visible in the online data 
acquisition system for an experiment. For modern experiments, the software frameworks sit 
in the real-time data streams and provide the fast reconstruction, analysis, and filter stages 
necessary to reduce data written to manageable levels. 


